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We demonstrate the existence of a chaotic invariant set of solutions of an idealized 
model for wind-forced quasi-geostrophic flow over a continental margin with 
variable topography. The model (originally formulated to investigate mean flow 
generation by topographic wave drag) has bottom topography that slopes linearly 
offshore and varies sinusoidally alongshore. The alongshore topographic scales are 
taken to be short compared to the cross-shelf scale, allowing Hart's (1979) quasi-two- 
dimensional approximation, and the governing equations reduce to a non- 
autonomous system of three coupled nonlinear ordinary differential equations. For 
weak (constant plus time-periodic) forcing and weak friction, we apply a recent 
extension (Wiggins & Holmes 1987) of the method of Melnikov (1963) to test for the 
existence of transverse homoclinic orbits in the model. The inviscid unforced 
equations have two constants of motion, corresponding to  energy E and enstrophy 
M ,  and reduce to a one-degree-of-freedom Hamiltonian system which, for a range of 
values of the constant G = E - M ,  has a pair of homoclinic orbits to a hyperbolic 
saddle point. Weak forcing and friction cause slow variations in G ,  but for a range 
of parameter values one saddle point is shown to persist as a hyperbolic periodic orbit 
and Melnikov's method may be applied to  study the perturbations of the associated 
homoclinic orbits. I n  the absence of time-periodic forcing, the hyperbolic periodic 
orbit reduces to  the unstable fixed point that  occurs with steady forcing and friction. 
The method yields analytical expressions for the parameter values for which sets of 
chaotic solutions exist for sufficiently weak time-dependent forcing and friction. The 
predictions of the perturbation analysis are verified numerically with computations 
of Poincar6 sections for solutions in the stable and unstable manifolds of the 
hyperbolic periodic orbit and with computations of solutions for general initial-value 
problems. In the presence of constant positive wind stress 70 (equatorward on eastern 
ocean boundaries), chaotic solutions exist when the ratio of the oscillatory wind 
stress 71 t o  the bottom friction parameter r is above a critical value that depends on 
T0/r and the bottom topographic height. The analysis complements a previous study 
of this model (Samelson & Allen 1987), in which chaotic solutions were observed 
numerically for weak near-resonant forcing and weak friction. 

OR 97331-5503, USA 

1. Introduction 
A nearly universal characteristic of mesoscale currents in the coastal ocean is the 

complexity of their time dependence (e.g. Allen 1980). Most coastal ocean velocity 
fields, as observed from moored current meters with limited temporal resolution, 
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contain energy in an apparently continuous (often red, sometimes peaked) band of 
frequencies below the local inertial frequency. This is presumably due in part to the 
wide range of frequencies and scales a t  which the coastal ocean is forced, and in part 
to instabilities and nonlinearities of the flow field that transfer energy between 
frequencies. The unpredictable nature of the atmospheric circulation in response to 
essentially periodic forcing by solar radiation has led to the consideration of 
atmospheric models in which instabilities and nonlinearities give rise to irregular, 
‘chaotic’ time evolution (Lorenz 1963,1984). The postulation of a chaotic mechanism 
to explain irregularity in coastal currents has evidently sccmed unnecessary, perhaps 
in part because the velocity fields over most Continental shelves are themsclvcs 
forced by complex and rapidly evolving meteorological conditions. 

Recent research has resulted, however, in the discovery of chaos in theoretical and 
laboratory models of a number of geophysical fluid dynamical processes relevant to 
the coastal ocean. These include models of baroclinic instability (Pedlosky & Frenzen 
1980; Pedlosky 1981a, b ;  Klein & Pcdlosky 1986; Hart 1985, 1986; Ohlscn & Hart 
1989), internal waves (Abarbanel 1983), and forced flow over topography (Samelson 
& Allen 1987). Whether this discovery will lead to  new and useful insights into the 
dynamics of coastal currents is a question of considerable interest that will rcquirc 
continued theoretical and observational efforts to resolve. Here, we present further 
analysis of chaotic behaviour in the model of forced flow over topography originally 
developed to study mean flow generation by Samelson & Allen (1987). (In that study, 
attention was restricted to weak near-resonant forcing with zero time-mean, and 
chaotic numerical solutions were found for certain parameter values.) We investigate 
the effect of weak forcing that is time-periodic at arbitrary frequency and has a 
constant component. We have two goals: to provide an analytical demonstration of 
the existence of chaotic solutions of a systematically derived (albeit highly idealized) 
model of coastal currents, and to improve understanding of the manner in which 
chaos arises in this particular model. 

2. Model equations 
The governing equations have been derived as a simple model for flow over the 

continental margin by Samelson & Allen (1987), who investigated mean flow 
generation by topographic interaction. We briefly review that derivation here. 

The coastal ocean over the continental shelf and slope is represented in the model 
by a single layer of homogeneous fluid that obeys the quasi-geostrophic potential 
vorticity equation (Pedlosky 1987). The fluid is contained between channel walls a t  
the coast and the deep ocean, and forced by an alongshore (along-channel) wind 
stress that is uniform in space but may vary in time. The bottom topography consists 
of a uniform offshore slope plus sinusoidal alongshore corrugations that vanish a t  the 
channel walls. Figure 1 shows the model geometry schematically. Right-handed 
Cartesian coordinates are chosen with y’ positive onshore, z’ positive upward, and x’ 
positive in the direction opposite to topographic Rossby wave phase propagation. 

Dependent and independent variables are non-dimensionalized as follows. The 
dimensionless stream function $ = p’/pU, fL ,  coordinates (x, y )  = (x’, y‘ ) /L ,  time 
t = t‘U,,/L, bottom topography h = h’/R,D, friction 4 = dE/2R,,D, and wind stress 
$” = +IT*. Primes denote dimensional variables, and p’ is pressure. The density p, 
Coriolis parameter f, velocity, length, and depth scales U,,, L ,  and D,  bottom Ekman 
layer depth a,, and wind stress scale 7* = pU, fR,  D = pUi D / L  are dimensional 
constants, and R,, = U,,/fL is the Rossby number. The velocity U,, is taken to be the 
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- 2nL t 

FIGURE 1 .  Schematic of model geometry. The idealized case considered involves the assumption 
2rrL 4 y;. 

fundamental scale, and the lengthscalc L is chosen by setting L2 = U,D/f(dh’/dy’), 
so that 2nL turns out to be the wavelength of a resonant topographic wave when the 
alongshore flow is equal to U,,. 

Following Hart (1979), Samelson & Allen (1987) consider bottom corrugations 
whose alongshore (along-channel) wavelength is short relative to the scale of their 
cross-shelf (cross-channel) variations. Then the topography may be written 

h(x,y) = y+2/26cosx, ( 2 . 1 )  

where the amplitude S of the corrugations may vary only slowly in y, and the non- 
dimensional quasi-geostrophic stream function may be decomposed as 

II.(x, y, t )  = - U(t )  y+ 4cx, t ) ,  (2 .2 )  

where U is the basic alongshore flow and 4 is a stream function for motions due to 
the topography. An equation for U may be obtained by x-averaging the alongshore 
momentum equation over a wavelength of the corrugations. A simplified potential 
vorticity equation follows from the decomposition ( 2 . 2 ) .  The result is the coupled 
pair of equations 

= -;Us. ( $ x  h) +fx,  
dt 

( 2 . 3 ~ )  

O x x t  = - [ J O X X X  - +xx  - 4 x  - UhX7 ( 2 . 3 b )  

where 
I h + 2 x  

is the x-averaged wave drag (pressure force on the topography). In  ( 2 . 3 a ) ,  the 
acceleration dU/dt of the alongshore flow is balanced by friction, x-averaged wave 
drag, and wind stress. In (2 .3b ) ,  the rate of change $xxt  of vorticity is balanced by 
alongshore advection, friction, and vortex stretching. There are two vortex- 
stretching terms: the first represents offshore flow over the shelf bottom slope, the 
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second alongshore flow over the topographic corrugations. For the present analysis, 
the forcing and friction will be small. and the forcing may contain a time-periodic 
part 

i” = i, + i, cos wt = €(To + ,fl cos wt), ( 2 . 5 ~ )  

r = er, (2.56) 

where 0 < E + I .  Equations equivalent to (2.3) were first derived and studied for 
steady forcing by Hart  (1979). (Charney & DeVore 1979 obtained similar equations 
by spectral truncation.) Note that except for alongshore advection, the nonlinear 
terms have vanished in (2.3b), because of the anisotropy in the topography. The 
stream function $ has not been restricted to small amplitude. 

Equations (2.3) may be reduced to  a set of ordinary differential equations by 
substitution of the Fourier expansion 

$ = 2/2($,cosx+$,sinx), (2.6) 

where q51 is in phase with topography (2.1) and $2 is out of phase. The result is 

-- - 6$,+c( - r U + T 0 + T 1  coswt), d U  
dt 

( 2 . 7 ~ )  

(2.7b) 

( 2 . 7 ~ )  

In the absence of forcing and friction (i” = i: = 0), two conservation statements exist 
for (2.3) (Samelson & Allen 1987). The first expresses conservation of 2-averaged 
kinetic energy, while the second results from the x-averaged potential enstrophy and 
alongshore momentum equations. For (2.7) with E = 0, the corresponding conserved 
quantities are 

E = i(U’+$:+$i), ( 2 . 8 ~ )  

and M = i($q+$;,-s$,+u, (2.8b) 

respectively. 
For analysis of the forced damped system, (2.7) with 6 > 0, it is convenient to  

replace the ‘in-phase’ wave amplitude $1 with a new variable G formed from the 
difference of E and M ,  and to rewrite (2.7) as 

where 

and 

- = F+e(-rU+T,+~,coswt),  
dU 
dt 

- _  - -G-(oi-G) U + $ U 2 - + U 3 + ~ ( - r F ) ,  dF 
dt 

dG 
dt 
- = E [  - YG - $U2 + ( U -  1) (7, + 7, cos wt)], 

( 2 . 9 ~ )  

(2.9b) 

( 2 . 9 ~ )  

(2.10U) 

(2.10b) 

(2.11) 
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The in-phase wave amplitude $1 may be retrieved from G using (2 .10b) ,  

(2 .12)  

The system (2 .9)  with E = 0 is Harniltonian, with canonical coordinates I; and F 
and Hamiltonian function 

H ( U , F )  = H(U,F;G) = ~ 2 + G l U + - a ( ~ ~ - G ) U 2 - - a U 3 + ~ U 4 ,  

= #E-;G2, (2.13) 

so that (2 .9)  may be rewritten as 

dG 
- = €93, dt 

(2 .14a)  

(2.14b) 

( 2 . 1 4 ~ )  

where g1 = - ~ U + T , + ~ ~ C O S W ~ ,  g2 = -rF,  (2 .15a,  b)  

g3 = - r G - ~ r U 2 + ( U - 1 ) ( ~ 0 + ~ 1 ~ ~ ~ ~ t ) .  ( 2 . 1 5 ~ )  

The Hamiltonian system (2 .13)  with E = 0 describes the natural oscillations (free 
waves) of alongshore flow and potential vorticity that occur in the model in the 
absence of friction and forcing. The energy-nstrophy quantity G appears only as a 
parameter when E = 0. 

Choices for magnitudes of the characteristic dimensional variables used in the non- 
dimensionalization so that the model corresponds approximately to  flow fields over 
the upper continental slope are discussed in Samelson & Allen (1987).  The values 
assumed there are U, = 10 cm s-l, D = 250 m, dh'ldy' = and f = s-l. This 
implies L = 5 km (2nL x 30 km) and R, = 0.2 .  The dimensional s' =RODS, where 
ROD = 50 m, so 6 = 0(1) is appropriate. The timescale L/Uo x 0.6 days so the 
dimensional period of the forcing 2nL/wUo is about 4 /w days and we consider 
w = O(1) .  For a dimensional alongshore wind stress 7p = 1 dyn cm-2 and a bottom 
Ekman layer depth of S, = 10 m (corresponding to a dimensional frictional timescale 
of TF = W / ( S ,  f )  x 6 days) the resulting magnitudes of the dimensionless wind stress 
and friction parameters are f" = rP/7* = 0.2 and i? = 0.1.  In  the analysis, we take 
advantage of the small values indicated for f" and i? and consider the limit of 
weak forcing and friction. The results depend on the dimensionless parameters 
$1." = 2 ~ , / ( p U ,  fSE), S = #/ROD,  and w = 2nL/UoTp, where Tp is the dimensional 
period of the forcing. The model is clearly highly idealized, but it includes several of 
the basic physical processes of continental slope flow fields in a reasonable and 
relatively simple way. Our object is the investigation of possible qualitative features 
of the nonlinear response of wind-forced flow over the continental slope and not the 
precise prediction of the magnitude or structure of oceanic velocity fields. 

3. Free waves and steady damped response 
Since the response to time-variable forcing ( E  > 0 , 7 ,  =l 0) that is weak ( E  4 1) will 

depend importantly on the dynamics that govern the flow when the forcing is absent 
or time-independent, it is useful to review the properties of the free waves ( E  = 0) and 
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FIQURE 2. (a )  Steady free-wave solutions as a function of U, (3.la),  with three contours of 
constant G from (3.2) shown. ( b )  Steady free-wave solutions G as a function of U ,  (3.2), with lines 
drawn at the constant-G values shown in (a ) .  (6 = 0.3003 in both (a)  and ( b ) . )  

the frictional response to steady forcing ( E  > 0, ro + 0, T~ = 0). Some of these 
solutions of (2.7) have been previously studied by Hart (1979), Charney & DeVore 
(1979), and Samelson & Allen (1987). 
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3.1. Free waves 
Consider first the steady free-wave solutions of (2.7) with E = 0. They satisfy 

SU 
$1 = m’ $2 = 0, ( 3 . l a ,  b )  

for arbitrary U,  provided U =k 1.  Vorticity produced by alongshore flow over the 
corrugations is balanced by alongshore advection of relative vorticity and vortex 
stretching by cross-shelf motion over the slope. No vorticity out of phase with the 
topography exists, so there is no wave drag on the alongshore flow. A resonance 
occurs when U =  1, i.e. when the alongshore flow is equal in magnitude to the 
oppositely directed phase velocity of the free topographic Rossby waves with x 
variability given by (2.6).  Figure 2 ( a )  shows a graph of versus U for the solution 
( 3 . 1 ~ ) .  Far from the resonance U = 1, the wave amplitude $1 approaches the 
corrugation amplitude 6. Near the resonance, $1 approaches infinity, changing sign 
across the resonance. The linear stability of these waves may be determined from the 
eigenvalues of the linearization of (2.7) at  (3.1).  They are neutrally stable (zero 
eigenvalue) to perturbations along the solution curve (3. l ) ,  since such perturbations 
simply transform one steady free wave into another and excite no time-dependent 
rcsponsc. For other perturbations, they are neutrally stable (two non-zero imaginary 
eigenvalues) for U < 1 and for U > 1 +d, and unstable (one positive and one negative 
eigenvalue) for 1 < u < d. 

The unperturbed ( E  = 0) system (2.7) may be integrated in terms of elliptic 
functions (Charney & DeVore 1979), as is evident from the Hamiltonian 
representation (2.13), so a complete description of all linear and nonlinear free-wave 
solutions may be found. The energymstrophy quantity G is conserved by both 
steady and unsteady free waves, and appears as a parameter in the Hamiltonian 
(2.13). Figure 2 ( a )  shows selected lines of constant G overlaid on the graph of the 
steady free-wave solutions. Figure 2 ( b )  is a similar plot with G as the ordinate, where 
from (2.10b) and (3 . la ) ,  the steady solutions are given by 

G =  U( U2 - 3U+ 2 4 )  
2( U -  1 )  (3.2) 

Note that while for each $1 there is a single value of alongshore flow U yielding a 
steady solution, for a given G there may be either one, two, or three values of U 
yielding steady solutions. 

An equation for the steady solutions U in terms of G may be found from (3.2) or 
from (2.96) with dF/dt = 0. The result is 

U3-3U2+2(w~-G)  U+2G = 0, (3.3) 

G, = $+S2-i.  (3.4) 

which has one real root for G < G,, two for G = G,, and three for G > G,, where 

The unsteady free waves are restricted to  move on lines of constant G in figure 2,  
since they conserve G, but to describe the time-dependent motion the plots must be 
supplemented with the scaled out-of-phase wave amplitude F.  Figure 3 shows 
contours of H( U,  F ; G) for two values of G. H is also conserved by the free waves, so 
the unsteady free-wave solutions must follow contours of H as they evolve in time. 
The steady free-wave solutions (3.1) or (3 .3)  are marked. In  figure 3 ( w ) ,  G < G, and 
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there is a single steady state (an elliptic centre), while in figure 3 (b) ,  G > G, and there 
are three possible steady states (two elliptic centres and a saddle point). 

By ( 2 . 9 ~ )  with 6 = 0, the time evolution of the unsteady free waves is clockwise 
along the contours, as the direction of the pressure force (2.4) on the alongshore flow 
depends only on the sign of q52 = F/S. In figure 3 ( a ) ,  the unsteady waves are all 
periodic oscillations around the single steady wave. The alongshore flow U is 
alternately stronger and weaker than for the steady wave, and the out-of-phase wave 
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q52 oscillates around zero in quadrature with U. In figure 3 (b) ,  there are three steady 
waves, and three classes of unsteady waves. The first class of unsteady waves consists 
of oscillations around the steady wave with strong alongshore flow, and the second 
consists of oscillations around the steady wave with zero alongshore flow. These are 
represented by the contours inside the right and left lobes, respectively, of the 
separatrix, the 'figure-eight ' contour that passes through the steady wave with 
intermediate alongshore flow. The third class of oscillations consists of large- 
amplitude free waves that oscillate around all three steady waves, following contours 
outside the separatrix. The separatrix waves for each lobe are mathematically 
similar to the motion of a pendulum which asymptotically approaches its (unstable) 
upright position. In that case, the separatrix separates the classes of oscillations for 
which the pendulum rod circles its support from those for which it swings back and 
forth. 

The separatrix itself consists of the unstable steady wave and two (nonlinear) 
unsteady free waves, which do not oscillate but rather asymptotically approach the 
unstable steady wave in both forward and backward time. Solutions for the 
separatrix waves may be found analytically. For 

(3 .5a)  G = G, > G, 

let u= us (3 .5b)  

be the intermediate root (saddle point) of (3 .3)  corresponding to the unstable steady 
wave. For E = 0 we define 

U =  Uo = Us+&, F = F,, G = G,, (3 .6a ,  b, c )  
so that (2.14) are 

where 

and 

( 3 . 7 ~ )  

(3 .7b)  

That k2 > 0 follows from (3 .3) ,  (3 .4)  and (3 .5) ,  with the intermediate deduction that 
1 < Us < l+d. As a result of (3 .6)  and the definition of Us ( 3 . 5 b ) ,  H ,  = 0 on the 
separatrix so that (3 .7a ,  c )  imply 

= f +&[4k2 - b& - V3; ,  
dt 

( 3 . 8 ~ )  

where b = 4 ( U s - 1 )  > 0. (3 .8b)  

The solution of ( 3 . 8 ~ )  is 
8k2Vm* 

&@-to )  = &*( t - to )  = (3 .9a)  
bVm+ + (8k2 - bVm*) cash [k( t  - to)] ' 

where V,, = i [ - b + ( b 2 + 1 6 k 2 ) f ] .  (3 .9b)  

The separatrix solutions for Fo(t-to) may be found from ( 3 . 7 ~ ) .  The solutions (3 .9)  
have been chosen so that, at t = to,  Fo(0) = 0, and Uo(0) = Us+ Vm*, the maximum 
( + ) or minimum ( - ) values of the alongshore flow attained for the separatrix waves. 
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the separatrix waves approach the unstable (saddle point) steady 
and obey the linearized forms of (3.7a, b) ,  

(3.10) 

so that the saddle-point eigenvalues are + k ,  and the corresponding stable and 
unstable linear modes are 

(U ,  F )  = (Us,  0) + ( 1 ,  - k)  d. exp [ - k(f - tl)], (3.11 a)  

( U ,  F )  = (Us,  0) + ( 1 ,  k)d.exp [k(t-t,)l, (3.11b) 

d. = V,,exp[-k(t,--t,)], d. = V,+exp[k(t,-t,)], - (3.11c, d) 

and 

where, from the limit of (3.9) as t --f f 00, 

16 k2 V ,  + 

‘,* = ( 8 l ~ ~ - b V , ~ ) ’  (3.11e) 

Thus, inviscid free waves near the unstable steady free wave will approach it if 
64, x - k( U -  Us)  and depart from it if x k( U -  U s ) .  At finite amplitude, the 
separatrix waves link the opposite-stability lincar modes of the steady free wave, and 
‘separate’ the three oscillatory regimes. In  $4, the special character of the separatrix 
waves is exploited to investigate the conditions under which the flow can become 
chaotic in the presence of weak time-dependent forcing and weak friction. 

3.2. Steady frictional response 
The steady frictional response ( E  > 0, r0 $: 0, r $. 0, 71 = 0) of (2.7) has been studied 
by Hart (1979) and Charney & DeVore (1979). Setting time derivatives equal to zero 
in (2.7) or (2.9) yields a cubic equation for the alongshore flow U ,  

(3.12a) 

and F = c(rU-r , ) ,  (3.12b) 

G = ( U -  1 )  A-+u2. ( 3 . 1 2 ~ )  
7 

r 

Equation ( 3 . 1 2 ~ )  may be rewritten 

‘0 = P ( U ) ,  (3.13a) 
r 

(3.13b) 
62U 

(U-  i)2+c2r2’ 
where P(U) = u+ 

and solved graphically for given 6 and w, as illustrated in figure 4. For small or large 
r O / r ,  there is a single steady response, while for intermediate values of ~ ~ / r ,  three 
steady responses are possible as illustrated by the dashed line in figure 4 at  one value 
of P(U) = To/?-. The linear stability of these solutions can be shown to depend on 
the sign of dP/dU, so that the intermediate of the three steady responses with 
dP/dU < 0 is unstable (when it exists), while the others are stable (unless 
dP/dU = 0, for which unusual case they are neutral). For weak forcing and friction 
(6 Q l ) ,  the steady response for F is order e by (3.12b), so by (2.9b) the cubic cquation 
(3.12a) for U differs from (3.3) by only order e2, and the steady forced solutions to 
(3.12) will be close to steady free-wave solutions of (3.3) when the respective values 
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u 

FIGURE 4. Steady frictional response given by T 0 / r  = P(U), (3.13), for S = 0.3003 and er = The 
solid line is P(U)  while the dashed line is T 0 / r  = 3.236. The intersections of the solid and dashed lines 
give the values of U corresponding to the three steady solutions of ( 3 . 1 2 ~ )  at this value of T 0 / r .  The 
intermediate solution with dP/dU < 0 is linearly unstable. These values of 6 and T 0 / r  are used in 
the numerical solutions in $6. 

of G coincide. For the forced solutions, G is determined by (3.12c),  and in general will 
have three different values for the three steady responses. 

4. The Melnikov criterion 
For.  weak steady plus time-periodic forcing (0 < E 4 1 , ~ ~  + 0, 71 + 0 ) ,  chaotic 

behaviour can occur in the model in which the flow switches randomly between the 
three oscillatory free-wave regimes. The existence of this irregular response to regular 
forcing is associated with the occurrence of Smale horseshoes (Smale 1963, 1967 ; 
Guckenheimer & Holmes 1983) in the model dynamics. The occurrence of such 
horseshoes is demonstrated analytically in this section, following an extension 
(Wiggins & Holmes 1987) of the method of Melnikov (1963). 

Melnikov’s method is an analytical technique developed to determine how 
separatrix solutions behave under perturbation. It yields a criterion for the existence 
in the perturbed system of a transverse ‘ homoclinic orbit ’, that is, a solution that is 
asymptotic to the same state in both forward and backward time. (The separatrix 
solutions of the unperturbed system are themselves non-transverse homoclinic 
orbits.) When combined with the Smale-Birkhoff homoclinic theorem (Smale 1963), 
this criterion may be used to prove the existence of chaotic solutions of the perturbed 
equations (Guckenheimer & Holmes 1983). This approach is one of the very few 
analytical techniques currently available for rigorously demonstrating the existence 
of chaotic solutions of a set of differential equations (Wiggins 1988). 

In  the model considered here, the satisfaction of the Melnikov criterion is 
(essentially) equivalent to the following conditions : (i) for some value of the 
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P’IGLTRE 5.  Schematic of the phase-space structure of the unperturbed system (2.14) with E = 0 for 
fixed S (e.g. 6 % 0.3) showing the one-dimensional manifold y,(G) and the surface of separatrices 
containing both the stable manifold WS, and the unstable manifold W;t of yo. 

energy-nstrophy quantity G, an unstable steady free wave ‘survives ’ the 
perturbation (weak forcing and damping) as an unstable periodic small-amplitude 
oscillation at the forcing frequency ; (ii) for a particular phase of the forcing relative 
to the wave, a separatrix free wave ‘survives ’ the perturbation as a forced wave that 
is asymptotic to the periodic oscillation in both forward and backward time. Under 
these conditions, forced waves near the ‘surviving ’ separatrix wave will be chaotic. 
That this should be so is not intuitively obvious. We do not repeat the argument 
here, since i t  has been carried out fully elsewhere and requires considerable technical 
detail. The chaotic behaviour is associated with the recurrent approach of the flow 
to states near the unstable oscillation. Geometric analysis reveals that when the 
Melnikov criterion is satisfied, this recurrence generates invariant Cantor sets of 
solutions, whose behaviour may be related to shift maps operating on infinite 
sequences of binary digits. For further discussion of the connection between the 
Melnikov criterion and the chaotic solutions, we refer the reader to  Guckenheimer & 
Holmes (1983) and Wiggins (1988). A description of the nature of the chaotic 
dynamics that occurs specifically in the case of three variables is given by Wiggins 
& Shaw (1988). While it is not simple to unravel the physical interpretation of these 
analyses, it is worth noting that chaotic behaviour has often been associated with the 
recurrent approach of systems to  unstable states (Silnikov 1965; Sparrow 1982). The 
linear instability causes the future evolution of the system to depend sensitively on 
its precise approach to the unstable state. Chaos may result if nonlinear effects 
conspire to alter that approach appropriately with each recurrence. 

Some information about the behaviour of the perturbed system may be gained 
from the invariant manifold theory (Hirsch, Pugh & Shub 1977). The unstable steady 
wave solution (3.5) depends continuously on G by (3.3), and so may be represented 
by the continuous curve (one-dimensional manifold) 

y,(G) : (U ,F ,  G) = (U , (G) ,  0, G) (4.1) 
of points in the ( U , F , G )  phase space. Similarly, the separatrix waves depend 
continuously on G and form a surface (two-dimensional manifold) of ( U ,  F ,  G) points. 
The phase-space structure of the unperturbed system is shown schematically in 
figure 5 .  The surface of separatrices contains both the stable manifold WS, of yo (the 
free waves asymptotic to  the steady free waves in forward time) and the unstable 
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manifold W,U of yo (the free waves asymptotic to the steady free waves in backward 
time), which are in this case the same. These manifolds are invariant : a solution with 
initial conditions in one of them remains within it forever. It follows from the 
perturbation results of the invariant manifold theory (Hirsch et al. 1977 ; Wiggins & 
Holmes 1987) that for sufficiently small e there is an invariant manifold y, within 
order 6 of yo. This means that there is a set of forced waves y, that remains forever 
close to the set of unstable steady free waves yo. Note that the closeness of y E  and yo 
applies to the manifolds and not necessarily to individual solutions within them, so 
that a given forced wave may be close to different free waves at  different times. 
(These conclusions apply as long as G(t) > Gc.) 

To establish the existence of a periodic oscillation among the solutions in the 
invariant manifold ye, it is necessary only to find a periodic solution of ( 2 . 9 ~ )  on yo 
(since G parameterizes yo and Iy,-yol = O ( E ) ) .  This may be done (Wiggins & Holmes 
1987) by obtaining a steady solution (with definite stability) of the equation 

which results from averaging ( 2 . 9 ~ )  or (2 .14~)  over a forcing period on the invariant 
manifold ye. Since Ig3(ya)-g3(yo)I = O ( E ) ,  g3(y,) may be replaced with g3(yo) in (4.2) 
and the result for the steady solution of (4.2) is 

to leading order in e. For given S and ro / r ,  (4.3) and (3.3) are two coupled equations 
for Us and G,, where G, > G, is required and Us must be the intermediate root of (3.3). 
Since 

(4.4) 

where a = -r(Us-70)(Us-l)/k2 

= r[k2 + (Us - 1)' + a 2 ] / k 2  > 0, (4.5) 

it follows that the solution (4.3) is linearly stable to perturbations in the invariant 
manifold 7,. 

Note that when (4.3) is substituted into (3.3), there results 

which to second order in 6 is just the equation for the steady damped response 
( 3 . 1 2 ~ ) .  The steady solution (4.3) of the averaged equation (4.2) corresponds to a 
periodic oscillation of (2.9) for sufficiently small e. Thus, weak periodic forcing 
perturbs the unstable steady frictional response to an unstable periodic oscillation. 
The existence of this oscillation satisfies the first of the two above conditions of the 
Melnikov criterion. Values of Us from (4.6) and G, from (4.3) as functions of8 and ro / r  
are plotted in figure 6. 

The second condition is satisfied when the existence of the 'surviving' separatrix 
wave is established. This is accomplished by a perturbation technique originally due 
to Melnikov (1963). By the averaging theorem (Hale 1969), the unstable periodic 
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FIGURE 6. Contour plots of (a) U, from (4.6) and ( b )  G, from (4.3) as a function of ro/r and 13. 
These values give the location ( U ,  F ,  G) = (Us, 0,  G,) + O(E)  of the unstable periodic oscillations. 

oscillation p = y , ( G , ) + 0 ( ~ )  of (2.9) is uniformly approximated to order E for 
t~ ( -  co, co) by the solution (4.3). The solutions asymptotic t o p  in forward time will 
be denoted Wz(p), while those asymptotic to p in backward time will be denoted 
W,U(p). The manifolds W:(yo) ,  W:(y , ) ,  W,S(p), W,U(p) are shown schematically in figure 
7. For the pert,urbed system, the manifolds are shown in a Poincark section with time 
interval equal to the forcing period 2n:/o.  
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FIOL-RE 7.  Schematic showing the change in geometry of the manifolds of the unperturbed system 
(2.14) with E = 0 under perturbation 0 < E 4 1. For clarity, only a part of the manifolds 
corresponding t o  the left lobe of the separatrices are shown. (a )  A section of the  unperturbed phase 
space as in figure 5.  ( h )  A Poincar6 section at time interval equal t o  the forcing period 2n/w showing 
the invariant manifold ye(@) and also the two-dimensional stable manifold %(p)  and the one- 
dimensional unstable manifold W,"(p)  of the  unstable periodic oscillation p = y,(G,) + O(s), where 
here G, = 0. 

We express the solutions 45 E W,S(p) and 4," E W,"(p)  for semi-infinite time intervals 
as a separatrix wave plus perturbation terms as follows (Wiggins & Holmes 1987) : 

434tO) = 40+E47+O(E2)> tE(--cO,tol, (4 .7bj  
434tO) = 40+s4;+o(~2) ,  t E [ t O ,  a), (4.7a) 

where 4 0 ( t - t 0 )  = cue, Fo, Gs), (4.8) 
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FIGURE 8. Schematic showing the geometry in a Poincar6 section a t  time interval 2n/w of the 
solutions in W,"(p) and W:(p) considered in the application of Melnikov's method. We consider 
q:~"(t , t , )  tha t  satisfy (4.11a, b ) .  Thus, we look for intersections when t = to in the (U,  G)-plane at 
F = 0, where a specific solution in W:(p)  is chosen by requiring tha t  Gs(t,,t,) = G"(t , , t , ) .  The 
parameter t o €  [0,27+] specifies the phase of the Poincar6 section relative to the sinusoidal forcing 
( 2 . 5 4 .  

and where (see 95 and Appendix A) 

&*"(t, t0) = (VS~",FS~* ,GS*") .  (4.9) 
If the exact solutions 4:'" could be obtained explicitly, then the existence of a 

4,S(tO> t o )  = 4 3 0 ,  t o ) ,  (4.10) 

for some to. It is possible, however, following Melnikov (1963) and Wiggins & Holmes 
(1987), to test the condition (4.10) using only qo without actually calculating the full 
solution 4:'" or the first-order part qS*", (4.9). The proof depends on the existence of 
the representation (4.7), but explicit solutions are required only for the unperturbed 
separatrix wave (4.8), given in (3.9). 

'surviving' separatrix wave would be indicated if it  could be shown that 

Consider & " ( t ,  to)  that satisfy 

FS(to, to)  = FU(tO,  to)  = 0, (4.1 1 a )  
GS( to , t , )  = GU(tO,t,),  (4.11 b )  

which by (4.7) imply FS(to, to)  = Fy(to,  to )  = 0 and GS(t,, to)  = Gy(t0 ,  t o ) .  If also 

W t o ,  t o )  = UU(tO, t o ) ,  (4.12) 

then (4.10) would be satisfied. The corresponding geometry in a Poincare' section is 
shown schematically in figure 8. Note that here we look for the satisfaction of 
(4.10) on a fixed plane in a Poincare' section for variable values of the parameter 
to E [0,2rc/w],  where to specifies the phase of the Poincare' section relative to the 
sinusoidal forcing (2.5a).  This is similar to the approach taken by Guckenheimer & 
Holmes (1983) for the planar case and gives results equivalent to those obtained 
using the alternative method of Wiggins & Holmes (1987) where the phase of the 
Poincard section is fixed while the location of the plane is varied (see e.g. the 
discussion in $4.5 of Guckenheimer & Holmes 1983). The application of the 
conditions (4.11 a,  b )  to FT,"(tO, to)  and Gs."(tO, to)  is discussed further in Appendix A. 



Chaos in forced quasi-geostrophic flow over topography 527 

The equality (4.12), and hence (4.10), may be conveniently tested by deriving an 
approximate expression for the change in Hamiltonian function (2.13) along qz and 
q,U, and then showing that the Hamiltonian may be inverted locally for the velocity 
U. A similar procedure was used by Amol'd (1964). The following analysis is 
simplified if in place of (2.13) we choose a Hamiltonian function as in (3.7c), i.e. 

H ( U , P ;  G )  = H( U ,  F ;  G )  -G[U, - iU,"]  -H(U,, 0;  0) ,  

- 1  - $' 2 -$k2V2+Q(Us-1) V3++gV4-(G-G,)[(U,-1) V + $ V 2 ] ,  ( 4 . 1 3 ~ )  

where u= lJ,+v, (4.13b) 
so that H[yo(G,)I = 0, VH[yo(G,)I = 0, (4.14a, b )  

aH 
aG 
- (qo)  =-(U,-l)v,-gV;, 

1- - VH(q0) *8(40, t ) ,  
then (4.16) may be written 

ms, u 
dt 

(4.15) 

(4.16) 

(4.17) 

( 4 . 1 8 ~ )  

(4.18 b )  

(4.18 c) 

(4.18d) 

(4.19) 

accurate t o  first order in e. Integration of (4.19) over ( - c o , t o ]  for HY and over 
[ to,  co) for H ;  gives 

From (4.18), H ; ( t + a o ) + O  and HY( t+-co )+O,  so that (4.20a, b )  may be added to 
obtain 

N d t o )  = HY(t0, to)-Hsl(to, t o )  
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FIGURE 9. Schematic illustrating the intersection in a Poincare' section at time interval 2n/w of the 
two-dimensional stable manifold WS(p) and the one-dimensional unstable manifold W : ( p ) ,  where 
here G, = 0. 

The O ( E )  errors made in replacing V H ( q , S ~ U ) . g ( q ~ ~ " ,  t )  with VH(qo) .g(qo ,  t )  in (4.19) 
remain O ( E )  in the integrals over infinite time in (4.20) and (4.21) because V H ( q o )  
and its derivatives vanish exponentially as t +k 00. The quantity AH,(to) is the 
first-order difference in Hamiltonian functions a t  t = to for the solutions with 
PS(to ,  to )  = FU(to ,  to)  = 0 and GS( to ,  t o )  = GU(tO, to)  that arc asymptotic to the periodic 
oscillation p in forward and in backward time. If AH,(to) has simple zeros, that is, if 
there exists a to = t", such that 

AH,(t",) = 0, ( 4 . 2 2 ~ )  

and if (4.22 b,  c) 

then it follows (Wiggins & Holmes 1987) from the implicit function theorem that 
US( to , to )  = UU(to , to)  for some to near to, so (4.10) is satisfied and a homoclinic solution 
exists. Such a solution lies in both W,S(p) and W,U(p), and so constitutcs an 
intersection of these manifolds. For a Poincark section, the intersection is transverse 
if the zeros are simple so the hypotheses of the SmaleBirkhoff homoclinic 
theorem are satisfied. The condition (4.223) is easily seen to be satisfied, since 
8HIX.J = -dF/dt, and ( 4 . 2 2 ~ )  may be satisfied as discussed below. A schematic 
illustrating the resulting intersection of the manifolds is shown in figure 9. Note that 
with (4.14) the expression (4.21) agrees with (1) of Wiggins & Holmes (Errata, 1988), 
derived as the Melnikov function by alternative but similar means, since here 

(aHI=) [yo(Gs)I = 0. 

Another derivation of the condition (4.22a) is presented in Appendix A, where it is 
obtained directly from the requirement that Us( to ,  t o )  = Uy( to ,  to) .  

The expression (4.21) may be evaluated using (4.18), (2.15) and (3.9). The result is 

( 4 . 2 3 ~ )  AH,(to) = rC, + 71 C ,  cos wt,, 
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where 

sinh [w cos-' ( a * ) / k ]  
C ,  = C$ - 4 ~ d  

sinh ( w n / k )  ' 

(4 .23b)  

( 4 . 2 3 ~ )  

d = k 2 + ( U , - 1 ) 2 ,  (4 .23d)  

b v m  * a* = 
(8 k2 - b Vm ) ' 

Thus, M,(t,) will have simple zeros provided 

(4 .23e)  

(4 .24)  

where (T1/r)$ depends on T ~ / T  and S. Contours (T, / r )? are plotted in figure 10 for 
w = 1 and w = 0.5. Instability increases as (7,/r)$ decreases, so as w decreases. The 
chaotic invariant set that exists in (2 .9)  by (4.24) contains a countable infinity of 
unstable periodic oscillations of all periods that are integer multiples of the forcing 
period 2n/w,  an uncountable set of non-periodic oscillations, and an oscillation that 
approaches all others in the invariant set (a dense orbit). The periodic oscillations are 
all of saddle type and they are dense in the invariant set. Note that the chaotic set, 
while invariant, is not attracting. When both inequalities (+  and - )  in (4 .24)  are 
satisfied, the set includes chaotic solutions for which the flow switches randomly 
between the three oscillatory free-wave regimes discussed in $3.1. Numerical 
calculations of solutions to (2 .9 )  that verify the condition (4 .24)  and that illustrate 
the nature of the resulting chaotic solutions are presented in $6. 

5. Approximate solutions for G:u 
The Melnikov criterion (4 .24)  is verified by numerical calculation of solutions to 

(2 .9 )  in Wz(p) and W t @ )  in $6. Because the intersection of the manifolds Wz(p)  and 
W,U@) indicated by ( 4 . 2 2 ~ )  occurs in a three-dimensional Poincark section, as 
illustrated in figure 9, the situation is more complicated than for the planar two- 
variable case described, for example, in Guckenheimer & Holmes (1983) .  The 
implementation of appropriate numerical calculations in the present case requires 
the derivation of some additional results that concern approximate solutions for 
Gss u. 

Approximate linear solutions in W,S(p) and W,U(p) near the unstable periodic 
oscillation p are obtained in Appendix B. The resulting linear approximations to 
solutions in WE@) for t € [ t l ,  co) are 

(us- "Bexp - e(r + a) ( t - t l ) ]  + U ,  + 0(s2) ,  

( 5 . 1 ~ )  

(5 .16 )  

(5.1 c )  

1 
F" = E [  - kA" exp [ - k(t  - t,)] +Fp]  + O(e2), 

G S  = G, +s[B exp [ - e ( r  + a) ( t - t l ) ]  + G p ]  + 0 ( e 2 ) ,  

where 71 sin wt, #TJ = - ( U , - 1 ) 2 - w 2  
w ( w 2  + k 2 )  P ( 5 . 2 ~ )  
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FIGURE 10(a, b).  For caption see facing page. 

(Us - 1)2 + kZ F, = rUs-ro-  TI cos wt, 
w2 + kz 

G ,  = ~ ') r1 sin ot, 
w 

while those to solutions in WF(p) for t E ( -  a, t2] are 

Uu = Us+e[AUexp[k(t-t,)] +U,]+O(e2) ,  

( 5 . 2 b )  

( 5 . 2 ~ )  

(5.3a) 
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FIGURE 10. Contours of (7Jr): from (4.24) as a function of ro/r and 8 for w = 1 .O and w = 0.5. The 
superscripts refer to perturbations about the right ( + ) or left ( - )  lobes of the separatrix. ( a )  
(7,/r)cf for w = 1.0, (b )  (7 , /r);  for w = 1.0, (c) (7Jr)C+ for w = 0.5, (d )  (7Jr);  for w = 0.5. 

F" = s[kA" exp [ k ( t  - t 2 ) ]  + F,] + O(e2) ,  (5 .3b )  

G" = G,+sGp+O(e2) .  (5.3c) 

Note that as t + co in (5.1) and t + - co in (5.3), the exponential terms vanish and the 
solutions converge to the order-e periodic oscillation p ,  for which (4.3) and (3.3) yield 
the first-order approximation (US," ,Fs ," ,  G S , " )  = (U,,O, G , ) + O ( e ) .  The terms in (5.1) 
and (5.3) with coefficients AS and A" are the linear approximations (3.9) to the 
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separatrix wave, which is a homogeneous solution of the perturbation equations 
(B 4). The terms in (5 .1)  with coefficient B describe the slow evolution associated with 
the stability (in y,) of p that was demonstrated in (4 .4)  and (4 .5) .  

The variational equations for q;, ', obtained by linearizing (2 .9)  about qo and 
neglecting higher-order terms, are 

where V, = Vo*(t-to) on the separatrix solution qo, and from (2.15), 

gl(qo> t )  = - rVo - (rU, - 70)  + 71 cos wt,  

g p ( q 0 , t )  = -r& 

g 3 ( q o ,  t )  = g; + (Us - 1) T~ cos wt,  

g i ( q o , t )  = - ( rUs-70)  Vo-$rVi+ V , T ~  coswt. 

(5 .4a)  

(5 .4b)  

(5 .4c)  

( 5 . 5 ~ )  

(5.56) 

(5 .5c)  

(5 .5d)  

It may be verified that (5.4) and (3 .7)  combine to give (4.19). 
Because q? in general contains variations on an Et  timescale as indicated by (5.1), 

however, a uniformly valid solution for q; over t~ [ to, 00) cannot be obtained from 
(5 .4)  alone. This is readily seen as follows. The integration of ( 5 . 4 ~ )  gives 

( 5 . 6 ~ )  

(5.6b) 

where C;," are constants and G,  is defined in ( 5 . 2 ~ ) .  If we apply (4.11 b )  to (5.6a, b ) .  
we obtain 

(5 .7)  
J -a 

which will be non-zero in general. For non-zero values of either CE or (2: it is 
clear from the form of (5 .6a,  6 )  and of (5.1) and (5 .3)  that the corresponding 
solutions (5.6u, b )  are not valid within O ( E )  ofp. This is also indicated by the fact that 
(5.6a, 6 )  with CSO," =I= 0 are not uniformly valid approximate solutions of ( 2 . 9 ~ )  for 

Regular perturbation procedures evidently are not sufficient to give a complete 
determination of GS and singular perturbation methods must be utilized so that 
(4 .7a,  b )  represent general asymptotic expansions (Kevorkian & Cole 1981). The 
equations ( 5 . 4 ~ )  only give a valid approximation for 0; for s ( t - t0)  < O(1). For 
e ( t - t0 )  3 O(1), the O(s2)  linear terms in GS and VS from ( 2 . 9 ~ )  that give rise in (5.1) 
to variations on the st timescale need to be considered for the full determination of 
GS. Consequently, in order for (5 .4)  to contain a complete description of the 
perturbation q;, ( 5 . 4 ~ )  must be modified to include 0(e2) linear terms that are 
important within O ( E )  of p ,  

l4t--tO)I ' O(1). 
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where 

(5.8 a )  

(5 .8b )  

( 5 . 8 ~ )  
(5.8d) 

With (5 .8c ,  d )  the perturbations qiSu may be obtained from the solution of (5.4~3, b )  
and (5 .8 ) .  The formulation (5.4~1, b )  and (5.8) is useful primarily because i t  then may 
be seen directly from (4.16)-(4.19) that the additional terms chi in (5 .8c) ,  which 
were not considered by Wiggins & Holmes (1987) but which are necessary for a 
complete determination of G s ,  will only contribute O(E)  terms to the Melnikov 
function and will not change any of the previous results. This is also consistent with 
the fact that (4.19) is given by the combination of (5.4) and (3.7). 

Although the determination of Gs. involves a singular perturbation problem, that 
problem is particularly straightforward in this case so that the nature of the solutions 
for GYsu may be readily found from (5.1), (5.3), and (5.6). It is apparent from 
( 5 . 1 ~ )  and (5.6,) that CS, is an approximate representation, for e(t-to) < 0 ( 1 )  of 
B e x p [ - ~ ( r + a ) ( t - t ~ ) ]  and from ( 5 . 3 ~ )  and (5.66) that Cz = 0. Furthermore, the 
results in (5.1) and (5.3) may be simply combined with those from (5.6) to form the 
following uniformly valid approximate solutions, with O(e) error, to  (5.4a, b )  and 
(5.8) : 

GS(t,t,) = eS,exp[-E(r+a)(t-t,)]- gjdt'+G,, tE[t,, a), ( 5 . 9 ~ )  

(5 .9b)  
J -m 

The consistency of (5.9a, b )  is demonstrated in Appendix A. 

satisfaction of (4.10). Subtracting (5.9a, b )  and using (4.11b), we obtain 
It is possible, in addition, to determine the required value for CS, in ( 5 . 9 ~ )  for 

m 

6; = J-mg;dt. (5.10) 

The substitution of (5 .54  in (5.10) gives 
W 

CS, = - ( rUS-7 , )  (5.11) 

The integrals in (5.11) may be evaluated using (3.6) and the results combined with 

C ,  = - (7 , / r )  C ,  coswt,, (5.12) 

which follows from setting Ml(t,) = 0 in (4.23a), to eliminate coswt, and obtain 

We will use (5.13) in the numerical solutions in $6 (see also Appendix C).  

(5.13) 

6. Numerical solutions 
The analytical prediction (4.24) for the intersection of the manifolds is compared 

with results from numerical solutions in this section. The numerical solutions in the 
manifolds are obtained by integration of (2.9) forward in time from initial conditions 
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FIGURE 11. Phase-space projections on the ( V ,  8')- and ( V ,  G')-planes of a Poincark section a t  time 
interval 2z/w of solutions in the stable Wz(p)  (dashed line) and unstable W : ( p )  (solid line) manifolds 
of p .  The solutions are calculated numerically as explained in Appendix C. For clarity, only those 
solutions corresponding to the left lobe ( - )  of the separatrix are shown. The parameters are 
S = 0.3003 and r o / r  = 3.236 so that G,  = 0 and Us = 1.236. Also, o = 1 and E = 0.005. ( a )  T~ = 1 ; 
r = 0.2 PO that T , / r  < ( T J r ) ;  = 11.62 and the manifolds do not intersect. ( b )  T~ = 10, r = 0.01 so 
that TJr > ( T 1 / r ) ;  and the manifolds intersect. The initial values of G"." do not coincide exactly 
a t  the homoclinic point near G = 0 because much of the variation of G'" on the et timescale is not 
included in the numerical calculations, but is represented by the approximate initial conditions 
(Appendix C). 
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on the linear approximation (5.3) to the unstable manifold and backward in time 
from initial conditions on the linear approximation (5.1) to the stable manifold. This 
allows the description of the perturbed manifolds to be extended to the nonlinear 
regime. More details of the numerical solution procedures are given in Appendix C. 
The estimate (5.13) of the value of 6; in ( 5 . 9 ~ )  allows us to start the calculation of 
the stable manifold solutions in the particular direction, represented by the choice of 
A S / B  in (5.1), that  gives the solutions in the stable manifold that intersect thc 
unstable manifold if (4.24) is satisfied. 

For the numerical calculations we specify 6 = 0.3003 and choose T 0 / r  = 3.236 so 
that G, = 0 and (3.3) is easily solved to  give Us = &[3- ( 1  -86*);] = 1.236. This value 
of 6 and Q = 0 were used in figure 2 and for the contour plot of H( U ,  F ;  G) in figure 
3 ( b ) .  In  figure 4, this value of 6 was used for the plot of the steady frictional response 
(3.13) with Er = lop4. A line at  7 0 / r  = 3.236 is also shown in figure 4 indicating the 
U-values of the three steady solutions in this case. In the numerical solutions, we also 
take w = 1 and vary the parameters 71, r and E .  The variables 

( V , F , G )  = (U-U,,F,G-G,), (6.1) 

are utilized so that the unstable periodic oscillation is near the origin (0, 0 , O ) .  
Figure 11 shows phase-space projections on the ( V , F ) -  and (V,G')-planes of a 

PoincarB section of the solutions in the stable and unstable manifolds for e = 0.005 
and for two different sets of parameter values corresponding to T 1 / r  < ( T 1 / r ) ;  and to 
7 J r  > (71/r);. For clarity, only the stable and unstable manifolds corresponding to 
the left lobe ( - )  of the separatrix are shown, since ( T ~ / T ) ,  < ( ~ ~ / r ) :  for this value of 
7 0 / r  and 6 (figure 10). For an intersection of W,S(p) and W,U(p) to occur, the solutions 
have to  coincide in all three variables (V ,  F ,  G') of the Poincare' section. For ( 7 J r )  < 
( T J r ) ; ,  the solutions plotted do not intersect, while for (7Jr)  > ( T J r ) ; ,  they do 
(within the accuracy of the approximations involved in choosing 6;), but the 
agreement of the (V ,  F )  and ( V ,  G') intersections is a little difficult to see in this plot. 
We take a closer look a t  the intersections below. Note that the initial values for G"," 
do not coincide exactly a t  the homoclinic point. This is because much of the variation 
on the et timescale in ( 5 . 1 ~ )  is not included in the numerical calculation, but is 
represented by the approximate initial conditions (Appendix C). In  figure 12, we 
examine the intersections and determine the dependence of these on the values of 
7 J r .  We specify e = 0.001 and restrict the plots to ( F ,  V )  and (F ,G' )  phase-space 
projections near the origin. Again only the solutions corresponding to the left lobe of 
the separatrix are shown. For these values of the parameters, (4.24) predicts 
intersection for r < 0.086, which is observed. Note that to the accuracy of the plots, 
the intersections occur a t  the same values of F in both the ( V ,  F )  and in the (G', F )  
projections, reflecting the intersection of the manifolds in the three-dimensional 
Poincard section. 

Time series of V calculated from (2.9) with initial conditions of V = F = G = 0 a t  
t = 0 for e = 0.01 and for diffcrent values of T~ and r are shown in figure 13. These 
include one case with T 1 / r  < ( T 1 / r ) $  and three with 7Jr > ( T J r ) : .  The time series are 
either regular or (transiently) chaotic as predicted. The three cases with different 
values of 7 J r  > (7Jr): are shown to illustrate the increase in the strength of the 
irregular behaviour for increasing 7 J r .  The calculations for V with T~ = 10, r = 0.01 
in the bottom plot in figure 13 are extended to longer time in figure 14. The chaotic 
behaviour is evident to  about t x 3300, when the solution begins a regular approach 
to a stable periodic oscillation near the location of the large-amplitude steady 
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frictional response. It is important to note that eventually nearly all solutions will 
asymptote to regular behaviour even when chaotic solutions exist in the model 
according to (4.24). This occurs because the chaotic invariant set is not attracting, 
but of saddle-type stability. The existence of strange attractors in the model is not 
implied by the satisfaction of the Melnikov criterion. The time series of V in figure 

\ - \ - 
- \  \ c \ - 0.0005 

\ 
\ - \ 

\ \  \ - . '+ - - 0  G 

FIGURE 12. Phase-space projections on ( F ,  v)- and ( F ,  G')-planes of a Poincark section at time 
intervals 2n/w of solutions in the stable W:(p)  (dashed line) and unstable W:(p) (solid line) 
manifolds of p similar to  figure 11. The values of 8, T 0 / r ,  and w are the same as figure 11. Here, 
E = 0.001 and T~ = 1. Only the region near the origin and the ( -  ) solutions are shown to clearly 
illustrate the variation in behaviour with T 1 / r  and to  show intersections in all three variables 
( V , F ,  G ) .  As in figure 11, the initial values of P" do not coincide at the homoclinic point near 
G = 0 because much of the variation of G'" on the et timescale is not included in the numerical 
calculations, but is represented by the approximate initial conditions (Appendix C). (a) r = 0.09, 
( b )  r = 0.086, ( c )  r = 0.08, (d )  r = 0.06. For these cases, ( T J r ) ;  = 11.63 so that intersection is 
predicted for r < 0.086. which is found. Xote that within the accuracy of the approximate initial 
conditions (Appendix C) the intersections occur at the same value of F in the (F, V ) -  and (F, G ) -  
planes reflecting the intersection of the stable and unstable manifolds in the three-dimensional 
Poincark section. 
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FIGURE 13. Time-series solutions for V calculated from (2.9) with initial conditions V = F = G' = 0 
at t = 0. Values of 6, T,,/T and w are the same as in figure 1 1 .  Here, E = 0.01 and T~ and r are varied. 
For ( a )  ( T J ~ )  < ( T J ~ ) :  and the solution involves a regular approach to a stable periodic oscillation 
near the location of the large amplitude steady frictional response. For (M) ( T J ~ )  > (TJT): 

and the solutions are chaotic. (a) T~ = 1,r  = 0.1, ( b )  T~ = l , r  = 0.01, ( c )  T~ = 5 , r  = 0.01, ( d )  
T I  = lo,?'= 0.01. 

14 illustrates this point, but also shows that the irregular behaviour can be quite 
long-lived. 

To show variations in chaotic behaviour with E for fixed r J r ,  we plot time-series 
calculations of V with T~ = 10, r = 0.01 for E = 0.001 and 6 = 0.1 in figures 15 and 16 
for comparison with V in figure 14, where E = 0.01. The behaviour is more erratic 
with the larger e. The initial values for the calculation with E = 0.001 in figure 15 were 
V = -0.2, F = - 1.95 x G' = 0, and the time series for V remained chaotic to a t  
least t = 5000. The initial values for the calculation in figure 16 with E = 0.1 were 
( V ,  F ,  G') = (0, 0,O) and the time series for V clearly shows chaotic behaviour. A 
Poincard section of the solution in figure 15 projected on the (V ,  F ) -  and ( V ,  G')-planes 
is shown in figure 17. The extent to which F and V stay close to the unperturbed 
separatrix and the fact that  G' remains small in this small-s case are clearly evident. 
Extreme sensitivity of the solutions to the initial conditions was found in making 
these calculations. Very small changes in initial values near the unstable periodic 
orbit (V ,  F ,  G') = (O,O, 0) led to totally different long-time behaviour. To check that 
the above solutions were accurately characterized as chaotic or regular, exponential 
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FIGURE 14. An extension to  longer time of the time series shown in figure 13(d),  i.e. with 
w = 1. E = 0.01, T~ = 10 and r = 0.01. This solution is chaotic t o  t x 3300 when it starts a regular 
approach to  the stable periodic oscillation near the large amplitude steady frictional response. 

FIGURE 15. Time-series solution for V at the same value of 8. T o / r ,  o). T~ and r as in figure 14 
but with E = 0.001 here (see also figure 17). 

growth rates of perturbations (‘local Lyapunov exponents ’) were calculated 
continuously as a function of time using the method of Wolf et al. (1985). Persistently 
positive values of one exponent were found for the solutions termed chaotic in 
agreement with the predictions of (4.24) and the visual evidence for irregularity of 
the time series. 
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FIQURE 16. Time series of V at the same values of 8, T J ~ ,  w ,  71 and r as in figures 14 and 15, 
but with E = 0.1 here. 
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FIQURE 17. Phase-space projections on the ( V , F ) -  and (V, G')-planes of the Poincar6 section a t  time 
interval 2z/w for the solution shown as a time series of V in figure 15 with E = 0.001 for 0 < t < 4000. 

7. Summary 
The existence of chaotic solutions in a systematically derived model of forced 

quasi-geostrophic flow over anisotropic topography has been demonstrated ana- 
lytically and verified numerically. The chaos is characterized by flow that switches 

18 FLM 226 
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randomly between three oscillatory nonlinear free-wave regimes. The result is of 
interest because it proves that the response of a simple model of coastal ocean 
currents to regular forcing can be irregular. 

Note that although the chaotic solutions found here are not attractors, the region 
of parameter space for which (4.24) predicts that they occur is extensive. This differs 
from the situation studied by Samelson & Allen (1987) where, for the same model 
with r0 = 0 and w near resonance, a strange attractor was found to exist in a very 
limited region of parameter space. On the other hand, in the present case when 
chaotic behaviour is possible by (4.24), the nature (chaotic or regular) of the solutions 
depends critically on the exact choice of initial values. A chaotic attractor could arise 
through a change in (global) stability of one of the chaotic solutions found here, but 
we do not pursue this possibility here. 

Whether there is a connection between the observed lack of regularity of coastal 
ocean currents and the chaotic behaviour found in idealized dynamical models such 
as the one considered here, remains unclear. We suggest that  the study of a sequence 
of increasingly complex theoretical or laboratory models of forced quasi-gcostrophic 
flow over topography might provide a fruitful approach for addressing that question. 
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Appendix A. Perturbation solutions in WE@) and W,U(p) 
Solutions for the O(E)  perturbation variables (4.9) qssu = (VS,", F S g U ,  GS,") that 

satisfy (5.4a, b )  and (5.8) with O(e)  error are found here. Based on the arguments in 
$5, we assumc that Gs  and GY are given by (5.9a, b )  and we solve (5.4a, 6 )  for Vs-" 
and Fs.". The consistency of the representations (5.9a, b )  for (7s." will be checked by 
verifying that additional corrections to 4:'" implied by the resultant solutions for 
qs." are O(c2) and that the limits of qO+eqs for t +  00 and qo+eq: for t +- co agree 
with (5.1) and (5.3) respectively. The perturbation solutions 4"'" so obtained thus 
represent the O ( E )  terms in a general asymptotic expansion (Kevorkian & Cole 1981) 
for 4;'". We also illustrate how the Mclnikov integral (4.21) may be obtained by 
satisfying (4.10) directly. This latter procedure has some similarities to that used in 
the analysis of Chow, Hale & Mallet-Paret (1980) in a two-variable case. 

We first consider solutions in W,U f o r t € (  - 00,t,]. We assume G;1 is given by (5.9b) 
and let 

so that (5.4a, b )  become 
VY = P; l+Up ,  FY = PY-tF,,  (A l a ,  b)  

where g' 1 -  - - r& ,  (A 3a) 

g; = - rF, - [3( Us - I )  V, + ZV3 U ,  + (Us - 1 + V,) gi dt' + V, G,. (A 3 b)  1, 
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A first integral of (A 2) may be found, in a manner similar to  (4.19) and (4.20), by 
combining (A 2) and (3.7) to give, 

where H is defined in (4.13) and all derivatives of H are evaluated at qo as in (4.18). 
Integration of (A 4) from - 00 to t and use of (4.14b) gives 

With (A 2a)  and (3.7a, b), (A 5 )  may be written 

The apparent difficulty around the singular point is circumvented by introducing a 
cutoff function and passing to the limit in the standard way. 

The solution of (A 6) for Py is 

where Cy is a constant, the last term has been left as an indefinite integral, and 
integration by parts together with (3.7 6) have been used on the gi aH/aU term in 
(A 6).  The equation (A 7) may be written in a more convenient form if we define a 
function Lo such that 

and use integration by parts. The result is 

where limits have now been placed on all integrals. An explicit expression for Lo is 
given a t  the end of this Appendix. The corresponding solution for py may be found 
from (A 9a)  and (A 2a) :  

py(t,to) = 

(A 9b) 
Note that the homogeneous solution for qy is C:dq,/dt. 

The limiting behaviour for Vy( t+  - 0 0 )  may be obtained by substituting the 
asymptotic expressions (3.11) for Fo and V, in (A 7) and evaluating the integrals. 
Agreement with (5.3a) is found. Similar agreement with (5.3b) is found for 

For the solutions in W,S for tE[to,  a), we assume Gs is given by (5.9a) and write 

(A 10a, b) 

Fy(t + - 00). 

V ;  = p; - 6;( Us - 1) K2 exp [ - e(r + a) (t  - to)] + U p ,  F ;  = @; + F,, 

18-2 
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so that (5.4a, b)  become 
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where 

+ 6; exp [ - E (  r + a) ( t  - t o ) ]  Vo{( Us - 1 ) k2[3( Us - 1 ) + %&] + l}. (A 12) 

Following a procedure similar to  that used to obtain (A 9a, b ) ,  we find 

(A 1 3 b )  

The limiting behaviour for V i ( t +  co) and FS(t+ 00) is in agreement with (5.la,  b) .  
It is conceptually useful to see how the condition (4.22) for the intersection of 

W f ( p )  and W,U(p), i.e. for (4.10) to be satisfied, is obtained from (A 9), (A 13) and 
(5.9a, b ) .  The constants CS," are chosen so that F ~ ~ " ( t o , t o )  = 0 and 6; is chosen to 
satisfy (5.10) so that GS(to, to) = GY(to, t o ) .  Note that the choice of CS," so that F>"(to, 
to)  = 0 corresponds to adding multiples of the homogeneous solution, C~~"dqo/d t ,  to 
47". This is also equivalent to choosing particular values for A"" in the linear regime 
solutions in (5.1) and (5.3). Likewise, the choice of 6; so that GS(to,to) = GY(to,to) 
corresponds to a particular choice of B in (5.1). It follows then from ( A 9 a )  and 
(A 13a), after considerable manipulation, that 

with O ( E )  error. This agrees with (4.21) and implies (4.22) when Vy(to, to) = VS(tO, to)  
so that (4.10) is satisfied. 

Substitution of the resulting solutions qo + sq:, " in the terms neglected in deriving 
(3.7), (5.4a, b)  and (5.8) from (2.9) indicates that additional corrections for q:," are 
O ( 2 )  for t E ( -  co, to] in W t  and for t~ [to, co) in W:, consistent with the assumptions 
regarding (5.9a, b)  and with the error estimates in Appendix B. This result may be 
shown for U,Sy' and F:." by allowing gi and g ; ~ "  in (A 2) and (A 11) to contain O ( E )  
error terms. It follows from (A 9) and (A 13) that the corrections to VS," and F>" are 
O(s) and thus O ( 2 )  to qo. For G:,", we let 

G,S," = C , + E G ~ " + E ~ G ~ " ,  
and find 

2- - - ErGi' " - (rU, - 70) (pi, " + U p )  - rV, Vs* + VS, u71 cos wt + O ( E ) .  (A 16) dG"*" 
dt 

Since the O(1) terms on the right-hand side of (A 16) either approach zero 
exponentially as t + 00 in W,S(p) or as t -+- co in W,U(p) or are multiplied by sin wt,  cos 
wt, or sin2wt, we conclude that the particular solution of (A 16) satisfies GS,," = O(1). 
Thus, the corrections are O ( 2 ) .  
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Finally, we record below Lo derived from (A 8). From ( 3 . 7 ~ )  and ( 3 . 9 ~ )  we have 

-ayksinhk(t-to) 
Fo(t-to) = 

[/3+yCOSh k(t-tO)l2' 
(A 17a) 

where U = 8k2Vm',,, /3 = bVm*, y = 8k2-bVm*. (A 17b,  c, d )  

It follows from (A 8) that 

Lo(t-to) = [(ayk)' ksinhk(t-t0)]-l[-4P3y-4/3y3- (/34+6/32y2+~4) coshk(t-t,) 

+ (6/3'y2 +b4) k(t-to) sinh k(t-to) +4/3y3 sinh2 k(t-to) 

+$y4sinh2k(t-to) cosh k(t-t,)], (A 18) 

where the constant of integration in (A 18) has been set equal to zero, since that 
constant simply leads to a change in CSsu. In particular, we find 

Appendix B. Linear solutions near the unstable periodic oscillation 

oscillation are obtained as follows. In  (2.9), let 
Approximate linear solutions in W f ( p )  and W,U(p) near the unstable periodic 

(U,F,G) = (U,,O,G,)+(V,F,G'), (B 1) 

where Us and G, are known from (3.3) and (4.3). The resulting equations for ( V , F ,  
G )  are 

- F + E( - rV-rU, cos wt), (B 2a) 

(B 2 b )  

(B 2 4  

dV 
dt 
- _  

- = k v +  ;(I - us) v 2 + 3  + (us - 1 + v) G + E( - TF), 
dF 
dt 

-- dG' - €[ - r G -  (rUs-TO) V-+rV'+ (Us-  1 + V )  71 coswt]. 
dt 

Since the particular solutions of (B 2 )  are O(E),  it  is natural to expand 

( V , F ,  a') = S ( ~ ~ , F ~ , G , ) + S ' ( U ~ , F ~ ,  G2)+0(s3).  (B 3) 

The resulting equations for (U,, F,, G,) are 

- Fl-rUs+rO+rlcos~t ,  2 dF - - k2Ul+(U,-1)G,, 

1- - (Us-  1)  7, cos wt + E[ -rG, - (rU, - rO -7, cos wt) U,], 

(B 4a, b)  

(B 4c) 

dU 1- 
dt dt 

dG 
dt 

where the O(E)  terms are retained in (B 4c) so that all leading-order linear solutions 
to (B 2) will be obtained. Equations (B 4) may be simplified further by substituting 

F, = Fi + Fp, G, = G; + G,, (B 5 b ,  c) 
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where U p ,  Fp and G p  are defined in (5.2). This givcs 
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- = F ; ,  dU; dF;,k21i; ,  
dt dt 

dt 
-rG~-(rUs-~o-71coswt)( - v G i + q  +asinwt+bsin2wt 1 , 

(Us--1)2-w2 (Us - 1)s  - w2 
-r(Us-l) 2,  6 = - 7; ,  ( B 7 a ,  6) w2+ k2 I: 2w(w2 + k2) 

and where the O(e)  term involving dG;/dt has been consistently dropped in (B 6a). 
The first two of these, (B 6 a ,  b), may be written in matrix form: 

yq) = ( 0  y) 
dt F; k2 0 F ;  ' 

and solved independently of the third, (B 6c) .  The eigenvalues of the matrix are f k 
and the corresponding eigenvectors are (1, k k ) .  It follows that for the eigenvalue 
+ k, 

and for the eigenvalue - k, 
( U ; , F i )  = (U;",F;") = ( 1 ,  k)A"exp[k(t-t,)], 

( l i ; , F ; )  = ( T , F i S )  = (1, -k)ASexp[-k(t-t,)]. 

(B 9) 

(B 10) 
G; is yet undetermined but enters into the solution for Ul by (B 5a).  The linear 
approximation (B 9) and (B lo), with (€3 l ) ,  (B 3), and (B 5), to the unstable and 
stable manifolds W,U and W,S may be compared with the linear approximations 
(3.11a, b)  to W: and WE. 

To determine G; for solutions in W,U(p), Ulu from (B 9) may be substituted in 
(B 6c),  while for solutions in Wz(p) ,  Uls from (B 10) is used. The result is 

-(r+a)Gi-- ') 71 coswt Gi - (.Us- 70 -71 coswt)AS." exp [ & k(t -tl, 2)] 
dt k2 

1 

+asinwt+bsin2wt 
It is convenient to  make the substitution 

G', = + 
where 

( f k cosot + w sinwt) As," exp [ f k(t-tl, 2)]  
71 +- 

f k  w 2 + k 2  

w 
and G,, satisfies 

1 - ( r + a ) G l h - ~ ~ l ~ ~ ~ ~ t G l h  (U -1) . 
dt k2 

The particular solutions G;h' are O ( E ) ,  while the solution of (B 14) is 

GI, = B eXp [ - € ( T  f a) (t- t l)  - €- (us-  ') sin wt], (B 15) 
W k 2  
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Gih = B exp [ -e (r+a)  (t-t,)] [ 1 + O(E)], which implies 

and Gjl, = 0. 

With the substitution, 

u2 = u2-- ') G,, 
k2 

the equations for ( U,, F,, G,) are 
dU' 2- 
dt - F 2  +R,, 

-- dF2 - k2 q + R 2 ,  
dt 

- e[-(r+a)G,-- ( u s - 1 ~ ~ l ~ o s ~ t G 2 ] + E R 3 ,  
dG 
-- 
dt k2 

(B 19a) 

(B 19b) 

(B 19c) 

( U  -1) dGi 
where R 1 -  - - r U , - L -  

E L 2  dt ' R, = - rFl + !( 1 - Us) U ;  + G, U,, (B 20a, b )  

R, = - ( rUs-70-71~os~t)  U,-$$T;. (B 20c) 

Solutions for U ~ " , F ~ ~ " ,  G Z U  may be readily obtained from (B 19) after substituting 
( U ~ . u , F ~ , " , G ~ s * u )  in (R1,R2,R3),  but these solutions are not written out here. It is 
clear from the form of (B 19) and of (R,,R,,R,) in (B 20) that ( U ~ ~ " , F $ " , G ~ * " )  will 
be well behaved and O( 1) in W : (p)  for t~ [t,, 00) and in W,U(p) for t e  ( - co, t,]. Secular 
terms may be removed in the usual manner (e.g. Kevorkian & Cole 1981) by a1loi:ring 
AS- " in ( Uisi ", Fisq ") to  depend on ct, which gives 

As- = AS,. " exp [ - c(r  + $a) t]. (B 21) 

As a result, the leading-order approximations for solutions in WS*"(p) near the 
unstable periodic oscillation, as defined in (B l) ,  (B 3) and (B 5), are given for WS(p) 
by (B lo), (B 12) and (B 16) and for W,U(p) by (B 8), (B 12) and (B 17) and are written 
out in (5.1) and (5.3). 

Appendix C. Numerical solutions in W,"(p) and W,U(p) 
To calculate numerical solutions in the stable manifold WS(p) we utilize the 

variables (V,  F ,  G') = (U-  Us, F ,  G-G,) and integrate (2.9) backwards in time 
starting at t = t,, with initial conditions from (5.1) : 

, 1 
F(tl) = E [  - kAs+FP(t l ) ] ,  

G(t , )  = e[B+Gp(tl)]. 

As a result of ( 5 . 9 ~ )  and (5.13) we can choose the ratio A"/B such that in a Poincar6 
section we integrate approximately along that particular direction in the two- 
dimensional manifold W,S@) for which, if (4.24) is satisfied, the solutions will intersect 
the one-dimensional manifold W:(p) (figures 7, 8, and 9). From (5.1) and (5.9a), we 
obtain 

B = C:exp[e(T+a)(tO-tl)], (C 2) 
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while from (3.11), with ds = dS, we find 
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Ic(t,-t,) = In (€AS/VLL+). (C 3) 

The elimination of ( t o - t , )  from (C 2) and (C 3) gives 

Thus, with (5.13) and (3.11 e ) ,  B is known in terms of €As. Note that for €--to, B - c:. 
Since for our calculation E < 1, we find typically that, even for €As < l,B x 6:. 

To calculate the Poincare' section for this particular set of solutions in W,S(p) 
with (C4), we proceed as follows. We choose initially a small value of ds (e.g. 
€As = 2 x use (C 4) for B, assume t ,  is such that sinwt, = 0, start with (C l ) ,  
and calculate the solution to a time that is one period of the forcing later, i.e. to 
ti = t, + ( 2 ~ / w ) ,  with ds initially chosen small enough that the solution a t  ti is still 
effectively in the linear regime. We then choose a large number (e.g. 2500) of initial 
conditions uniformly spaced in (U ,  F ,  G )  between the initial values and the ti  values 
and calculate numerical solutions starting these also a t  t = t,, so that sinwt, = 0. 
Each solution is sampled a t  time intervals of (21t/w) to provide a point in the Poincare' 
section of Wz(p) .  These points are plotted in figures 11 and 12 as projections on the 
( V , F ) - ,  (V ,  G)-, or (G,F)-planes where the individual points are connected to form 
continuous lines. 

To calculate numerical solutions in the unstable manifold W z  we integrate (2.9) 
forward in time starting a t  t = t, with initial conditions from (5.3): 

V(t,) = ~ [ A U + U p ( t , ) ] ,  F(t,) = ~ [ l c A ~ + F ~ ( t , ) ] ,  G'(t,) = EGp(t2) ,  (C 5a ,  b ,  c )  

where again du is small and we assume t, is such that sinwt, = 0. The Poincare' 
section for W,U(p) is then found by plotting a large number of different solutions a t  
time intervals of (27c/w) in a manner similar to that explained above in connection 
with Wz(p). 
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